Databricks v1.63.0 published on Thursday, Mar 13, 2025 by Pulumi
databricks.getMlflowModel
Explore with Pulumi AI
Note If you have a fully automated setup with workspaces created by databricks.MwsWorkspaces or azurerm_databricks_workspace, please make sure to add depends_on attribute in order to prevent default auth: cannot configure default credentials errors.
Retrieves the settings of databricks.MlflowModel by name.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as databricks from "@pulumi/databricks";
const thisMlflowModel = new databricks.MlflowModel("this", {
    name: "My MLflow Model",
    description: "My MLflow model description",
    tags: [
        {
            key: "key1",
            value: "value1",
        },
        {
            key: "key2",
            value: "value2",
        },
    ],
});
const _this = databricks.getMlflowModel({
    name: "My MLflow Model",
});
export const model = _this;
import pulumi
import pulumi_databricks as databricks
this_mlflow_model = databricks.MlflowModel("this",
    name="My MLflow Model",
    description="My MLflow model description",
    tags=[
        {
            "key": "key1",
            "value": "value1",
        },
        {
            "key": "key2",
            "value": "value2",
        },
    ])
this = databricks.get_mlflow_model(name="My MLflow Model")
pulumi.export("model", this)
package main
import (
	"github.com/pulumi/pulumi-databricks/sdk/go/databricks"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := databricks.NewMlflowModel(ctx, "this", &databricks.MlflowModelArgs{
			Name:        pulumi.String("My MLflow Model"),
			Description: pulumi.String("My MLflow model description"),
			Tags: databricks.MlflowModelTagArray{
				&databricks.MlflowModelTagArgs{
					Key:   pulumi.String("key1"),
					Value: pulumi.String("value1"),
				},
				&databricks.MlflowModelTagArgs{
					Key:   pulumi.String("key2"),
					Value: pulumi.String("value2"),
				},
			},
		})
		if err != nil {
			return err
		}
		this, err := databricks.LookupMlflowModel(ctx, &databricks.LookupMlflowModelArgs{
			Name: "My MLflow Model",
		}, nil)
		if err != nil {
			return err
		}
		ctx.Export("model", this)
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Databricks = Pulumi.Databricks;
return await Deployment.RunAsync(() => 
{
    var thisMlflowModel = new Databricks.MlflowModel("this", new()
    {
        Name = "My MLflow Model",
        Description = "My MLflow model description",
        Tags = new[]
        {
            new Databricks.Inputs.MlflowModelTagArgs
            {
                Key = "key1",
                Value = "value1",
            },
            new Databricks.Inputs.MlflowModelTagArgs
            {
                Key = "key2",
                Value = "value2",
            },
        },
    });
    var @this = Databricks.GetMlflowModel.Invoke(new()
    {
        Name = "My MLflow Model",
    });
    return new Dictionary<string, object?>
    {
        ["model"] = @this,
    };
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.databricks.MlflowModel;
import com.pulumi.databricks.MlflowModelArgs;
import com.pulumi.databricks.inputs.MlflowModelTagArgs;
import com.pulumi.databricks.DatabricksFunctions;
import com.pulumi.databricks.inputs.GetMlflowModelArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        var thisMlflowModel = new MlflowModel("thisMlflowModel", MlflowModelArgs.builder()
            .name("My MLflow Model")
            .description("My MLflow model description")
            .tags(            
                MlflowModelTagArgs.builder()
                    .key("key1")
                    .value("value1")
                    .build(),
                MlflowModelTagArgs.builder()
                    .key("key2")
                    .value("value2")
                    .build())
            .build());
        final var this = DatabricksFunctions.getMlflowModel(GetMlflowModelArgs.builder()
            .name("My MLflow Model")
            .build());
        ctx.export("model", this_);
    }
}
resources:
  thisMlflowModel:
    type: databricks:MlflowModel
    name: this
    properties:
      name: My MLflow Model
      description: My MLflow model description
      tags:
        - key: key1
          value: value1
        - key: key2
          value: value2
variables:
  this:
    fn::invoke:
      function: databricks:getMlflowModel
      arguments:
        name: My MLflow Model
outputs:
  model: ${this}
import * as pulumi from "@pulumi/pulumi";
import * as databricks from "@pulumi/databricks";
const _this = databricks.getMlflowModel({
    name: "My MLflow Model with multiple versions",
});
const thisModelServing = new databricks.ModelServing("this", {
    name: "model-serving-endpoint",
    config: {
        servedModels: [{
            name: "model_serving_prod",
            modelName: _this.then(_this => _this.name),
            modelVersion: _this.then(_this => _this.latestVersions?.[0]?.version),
            workloadSize: "Small",
            scaleToZeroEnabled: true,
        }],
    },
});
import pulumi
import pulumi_databricks as databricks
this = databricks.get_mlflow_model(name="My MLflow Model with multiple versions")
this_model_serving = databricks.ModelServing("this",
    name="model-serving-endpoint",
    config={
        "served_models": [{
            "name": "model_serving_prod",
            "model_name": this.name,
            "model_version": this.latest_versions[0].version,
            "workload_size": "Small",
            "scale_to_zero_enabled": True,
        }],
    })
package main
import (
	"github.com/pulumi/pulumi-databricks/sdk/go/databricks"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		this, err := databricks.LookupMlflowModel(ctx, &databricks.LookupMlflowModelArgs{
			Name: "My MLflow Model with multiple versions",
		}, nil)
		if err != nil {
			return err
		}
		_, err = databricks.NewModelServing(ctx, "this", &databricks.ModelServingArgs{
			Name: pulumi.String("model-serving-endpoint"),
			Config: &databricks.ModelServingConfigArgs{
				ServedModels: databricks.ModelServingConfigServedModelArray{
					&databricks.ModelServingConfigServedModelArgs{
						Name:               pulumi.String("model_serving_prod"),
						ModelName:          pulumi.String(this.Name),
						ModelVersion:       pulumi.String(this.LatestVersions[0].Version),
						WorkloadSize:       pulumi.String("Small"),
						ScaleToZeroEnabled: pulumi.Bool(true),
					},
				},
			},
		})
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Databricks = Pulumi.Databricks;
return await Deployment.RunAsync(() => 
{
    var @this = Databricks.GetMlflowModel.Invoke(new()
    {
        Name = "My MLflow Model with multiple versions",
    });
    var thisModelServing = new Databricks.ModelServing("this", new()
    {
        Name = "model-serving-endpoint",
        Config = new Databricks.Inputs.ModelServingConfigArgs
        {
            ServedModels = new[]
            {
                new Databricks.Inputs.ModelServingConfigServedModelArgs
                {
                    Name = "model_serving_prod",
                    ModelName = @this.Apply(@this => @this.Apply(getMlflowModelResult => getMlflowModelResult.Name)),
                    ModelVersion = @this.Apply(@this => @this.Apply(getMlflowModelResult => getMlflowModelResult.LatestVersions[0]?.Version)),
                    WorkloadSize = "Small",
                    ScaleToZeroEnabled = true,
                },
            },
        },
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.databricks.DatabricksFunctions;
import com.pulumi.databricks.inputs.GetMlflowModelArgs;
import com.pulumi.databricks.ModelServing;
import com.pulumi.databricks.ModelServingArgs;
import com.pulumi.databricks.inputs.ModelServingConfigArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        final var this = DatabricksFunctions.getMlflowModel(GetMlflowModelArgs.builder()
            .name("My MLflow Model with multiple versions")
            .build());
        var thisModelServing = new ModelServing("thisModelServing", ModelServingArgs.builder()
            .name("model-serving-endpoint")
            .config(ModelServingConfigArgs.builder()
                .servedModels(ModelServingConfigServedModelArgs.builder()
                    .name("model_serving_prod")
                    .modelName(this_.name())
                    .modelVersion(this_.latestVersions()[0].version())
                    .workloadSize("Small")
                    .scaleToZeroEnabled(true)
                    .build())
                .build())
            .build());
    }
}
resources:
  thisModelServing:
    type: databricks:ModelServing
    name: this
    properties:
      name: model-serving-endpoint
      config:
        servedModels:
          - name: model_serving_prod
            modelName: ${this.name}
            modelVersion: ${this.latestVersions[0].version}
            workloadSize: Small
            scaleToZeroEnabled: true
variables:
  this:
    fn::invoke:
      function: databricks:getMlflowModel
      arguments:
        name: My MLflow Model with multiple versions
Using getMlflowModel
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getMlflowModel(args: GetMlflowModelArgs, opts?: InvokeOptions): Promise<GetMlflowModelResult>
function getMlflowModelOutput(args: GetMlflowModelOutputArgs, opts?: InvokeOptions): Output<GetMlflowModelResult>def get_mlflow_model(description: Optional[str] = None,
                     latest_versions: Optional[Sequence[GetMlflowModelLatestVersion]] = None,
                     name: Optional[str] = None,
                     permission_level: Optional[str] = None,
                     tags: Optional[Sequence[GetMlflowModelTag]] = None,
                     user_id: Optional[str] = None,
                     opts: Optional[InvokeOptions] = None) -> GetMlflowModelResult
def get_mlflow_model_output(description: Optional[pulumi.Input[str]] = None,
                     latest_versions: Optional[pulumi.Input[Sequence[pulumi.Input[GetMlflowModelLatestVersionArgs]]]] = None,
                     name: Optional[pulumi.Input[str]] = None,
                     permission_level: Optional[pulumi.Input[str]] = None,
                     tags: Optional[pulumi.Input[Sequence[pulumi.Input[GetMlflowModelTagArgs]]]] = None,
                     user_id: Optional[pulumi.Input[str]] = None,
                     opts: Optional[InvokeOptions] = None) -> Output[GetMlflowModelResult]func LookupMlflowModel(ctx *Context, args *LookupMlflowModelArgs, opts ...InvokeOption) (*LookupMlflowModelResult, error)
func LookupMlflowModelOutput(ctx *Context, args *LookupMlflowModelOutputArgs, opts ...InvokeOption) LookupMlflowModelResultOutput> Note: This function is named LookupMlflowModel in the Go SDK.
public static class GetMlflowModel 
{
    public static Task<GetMlflowModelResult> InvokeAsync(GetMlflowModelArgs args, InvokeOptions? opts = null)
    public static Output<GetMlflowModelResult> Invoke(GetMlflowModelInvokeArgs args, InvokeOptions? opts = null)
}public static CompletableFuture<GetMlflowModelResult> getMlflowModel(GetMlflowModelArgs args, InvokeOptions options)
public static Output<GetMlflowModelResult> getMlflowModel(GetMlflowModelArgs args, InvokeOptions options)
fn::invoke:
  function: databricks:index/getMlflowModel:getMlflowModel
  arguments:
    # arguments dictionaryThe following arguments are supported:
- Name string
- Name of the registered model.
- Description string
- User-specified description for the object.
- LatestVersions List<GetMlflow Model Latest Version> 
- Array of model versions, each the latest version for its stage.
- PermissionLevel string
- Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- 
List<GetMlflow Model Tag> 
- Array of tags associated with the model.
- UserId string
- The username of the user that created the object.
- Name string
- Name of the registered model.
- Description string
- User-specified description for the object.
- LatestVersions []GetMlflow Model Latest Version 
- Array of model versions, each the latest version for its stage.
- PermissionLevel string
- Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- 
[]GetMlflow Model Tag 
- Array of tags associated with the model.
- UserId string
- The username of the user that created the object.
- name String
- Name of the registered model.
- description String
- User-specified description for the object.
- latestVersions List<GetMlflow Model Latest Version> 
- Array of model versions, each the latest version for its stage.
- permissionLevel String
- Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- 
List<GetMlflow Model Tag> 
- Array of tags associated with the model.
- userId String
- The username of the user that created the object.
- name string
- Name of the registered model.
- description string
- User-specified description for the object.
- latestVersions GetMlflow Model Latest Version[] 
- Array of model versions, each the latest version for its stage.
- permissionLevel string
- Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- 
GetMlflow Model Tag[] 
- Array of tags associated with the model.
- userId string
- The username of the user that created the object.
- name str
- Name of the registered model.
- description str
- User-specified description for the object.
- latest_versions Sequence[GetMlflow Model Latest Version] 
- Array of model versions, each the latest version for its stage.
- permission_level str
- Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- 
Sequence[GetMlflow Model Tag] 
- Array of tags associated with the model.
- user_id str
- The username of the user that created the object.
- name String
- Name of the registered model.
- description String
- User-specified description for the object.
- latestVersions List<Property Map>
- Array of model versions, each the latest version for its stage.
- permissionLevel String
- Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- List<Property Map>
- Array of tags associated with the model.
- userId String
- The username of the user that created the object.
getMlflowModel Result
The following output properties are available:
- Description string
- User-specified description for the object.
- Id string
- Unique identifier for the object.
- LatestVersions List<GetMlflow Model Latest Version> 
- Array of model versions, each the latest version for its stage.
- Name string
- Name of the model.
- PermissionLevel string
- Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- 
List<GetMlflow Model Tag> 
- Array of tags associated with the model.
- UserId string
- The username of the user that created the object.
- Description string
- User-specified description for the object.
- Id string
- Unique identifier for the object.
- LatestVersions []GetMlflow Model Latest Version 
- Array of model versions, each the latest version for its stage.
- Name string
- Name of the model.
- PermissionLevel string
- Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- 
[]GetMlflow Model Tag 
- Array of tags associated with the model.
- UserId string
- The username of the user that created the object.
- description String
- User-specified description for the object.
- id String
- Unique identifier for the object.
- latestVersions List<GetMlflow Model Latest Version> 
- Array of model versions, each the latest version for its stage.
- name String
- Name of the model.
- permissionLevel String
- Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- 
List<GetMlflow Model Tag> 
- Array of tags associated with the model.
- userId String
- The username of the user that created the object.
- description string
- User-specified description for the object.
- id string
- Unique identifier for the object.
- latestVersions GetMlflow Model Latest Version[] 
- Array of model versions, each the latest version for its stage.
- name string
- Name of the model.
- permissionLevel string
- Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- 
GetMlflow Model Tag[] 
- Array of tags associated with the model.
- userId string
- The username of the user that created the object.
- description str
- User-specified description for the object.
- id str
- Unique identifier for the object.
- latest_versions Sequence[GetMlflow Model Latest Version] 
- Array of model versions, each the latest version for its stage.
- name str
- Name of the model.
- permission_level str
- Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- 
Sequence[GetMlflow Model Tag] 
- Array of tags associated with the model.
- user_id str
- The username of the user that created the object.
- description String
- User-specified description for the object.
- id String
- Unique identifier for the object.
- latestVersions List<Property Map>
- Array of model versions, each the latest version for its stage.
- name String
- Name of the model.
- permissionLevel String
- Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- List<Property Map>
- Array of tags associated with the model.
- userId String
- The username of the user that created the object.
Supporting Types
GetMlflowModelLatestVersion    
- CreationTimestamp int
- CurrentStage string
- Description string
- User-specified description for the object.
- LastUpdated intTimestamp 
- Name string
- Name of the registered model.
- RunId string
- RunLink string
- Source string
- Status string
- StatusMessage string
- 
List<GetMlflow Model Latest Version Tag> 
- Array of tags associated with the model.
- UserId string
- The username of the user that created the object.
- Version string
- CreationTimestamp int
- CurrentStage string
- Description string
- User-specified description for the object.
- LastUpdated intTimestamp 
- Name string
- Name of the registered model.
- RunId string
- RunLink string
- Source string
- Status string
- StatusMessage string
- 
[]GetMlflow Model Latest Version Tag 
- Array of tags associated with the model.
- UserId string
- The username of the user that created the object.
- Version string
- creationTimestamp Integer
- currentStage String
- description String
- User-specified description for the object.
- lastUpdated IntegerTimestamp 
- name String
- Name of the registered model.
- runId String
- runLink String
- source String
- status String
- statusMessage String
- 
List<GetMlflow Model Latest Version Tag> 
- Array of tags associated with the model.
- userId String
- The username of the user that created the object.
- version String
- creationTimestamp number
- currentStage string
- description string
- User-specified description for the object.
- lastUpdated numberTimestamp 
- name string
- Name of the registered model.
- runId string
- runLink string
- source string
- status string
- statusMessage string
- 
GetMlflow Model Latest Version Tag[] 
- Array of tags associated with the model.
- userId string
- The username of the user that created the object.
- version string
- creation_timestamp int
- current_stage str
- description str
- User-specified description for the object.
- last_updated_ inttimestamp 
- name str
- Name of the registered model.
- run_id str
- run_link str
- source str
- status str
- status_message str
- 
Sequence[GetMlflow Model Latest Version Tag] 
- Array of tags associated with the model.
- user_id str
- The username of the user that created the object.
- version str
- creationTimestamp Number
- currentStage String
- description String
- User-specified description for the object.
- lastUpdated NumberTimestamp 
- name String
- Name of the registered model.
- runId String
- runLink String
- source String
- status String
- statusMessage String
- List<Property Map>
- Array of tags associated with the model.
- userId String
- The username of the user that created the object.
- version String
GetMlflowModelLatestVersionTag     
GetMlflowModelTag   
Package Details
- Repository
- databricks pulumi/pulumi-databricks
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the databricksTerraform Provider.